7 links
tagged with all of: sql + performance
Click any tag below to further narrow down your results
Links
The article evaluates various language models (LLMs) to determine which one generates the most effective SQL queries. It compares the performance of these models based on their accuracy, efficiency, and ease of use in writing SQL code. The findings aim to guide users in selecting the best LLM for their SQL-related tasks.
Sirius is a GPU-native SQL engine that integrates with existing databases like DuckDB using the Substrait query format, achieving approximately 10x speedup over CPU query engines for TPC-H workloads. It is designed for interactive analytics and supports various AWS EC2 instances, with detailed setup instructions for installation and performance testing. Sirius is currently in active development, with plans for additional features and support for more database systems.
Snowflake outperforms Databricks in terms of execution speed and cost, with significant differences highlighted in a comparative analysis of query performance using real-world data. The findings emphasize the importance of realistic data modeling and query design in benchmarking tests, revealing that Snowflake can be more efficient when proper practices are applied.
Apache DataFusion 50.0.0 has been released, featuring significant performance enhancements, including improved dynamic filter pushdown and nested loop join optimizations. The update introduces new capabilities such as support for the QUALIFY SQL clause and extended functionality for window functions, alongside community growth and contributions.
Pipelining in PostgreSQL allows clients to send multiple queries without waiting for the results of previous ones, significantly improving throughput. Introduced in PostgreSQL 18, this feature enhances the efficiency of query processing, especially when dealing with large batches of data across different network types. Performance tests indicate substantial speed gains, underscoring the benefits of utilizing pipelining in SQL operations.
Data types significantly influence the performance and efficiency of indexing in PostgreSQL. The article explores how different data types, such as integers, floating points, and text, affect the time required to create indexes, emphasizing the importance of choosing the right data type for optimal performance.
The article discusses common SQL anti-patterns that developers should avoid to improve database performance and maintainability. It highlights specific practices that can lead to inefficient queries and recommends better alternatives to enhance SQL code quality. Understanding and addressing these anti-patterns is crucial for effective database management.