4 links
tagged with all of: reliability + performance
Click any tag below to further narrow down your results
Links
The article discusses the importance of having a well-defined system prompt for AI models, emphasizing how it impacts their performance and reliability. It encourages readers to consider the implications of their system prompts and to share effective examples to enhance collective understanding.
Harvey's AI infrastructure effectively manages model performance across millions of daily requests by utilizing active load balancing, real-time usage tracking, and a centralized model inference library. Their system prioritizes reliability, seamless onboarding of new models, and maintaining high availability even during traffic spikes. Continuous optimization and innovation are key focuses for enhancing performance and user experience.
The article explores a mysterious issue related to PostgreSQL's handling of SIGTERM signals, which can lead to unexpected behavior during shutdown. It discusses the implications of this behavior on database performance and reliability, particularly in the context of modern cloud architectures. The author highlights the importance of understanding these nuances to avoid potential pitfalls in database management.
LinkedIn has developed a new high-performance DNS Caching Layer (DCL) to enhance the resilience and reliability of its DNS client infrastructure, addressing limitations of the previous system, NSCD. DCL features adaptive timeouts, exponential backoff, and dynamic configuration management, allowing for real-time updates without service interruptions, thus improving overall DNS performance and debugging capabilities. The implementation of DCL has significantly improved visibility into DNS traffic, enabling proactive monitoring and faster resolution of issues across LinkedIn's vast infrastructure.