Reinforcement learning (RL) is becoming essential in developing large language models (LLMs), particularly for aligning them with human preferences and enhancing their capabilities through multi-turn interactions. This article reviews various open-source RL libraries, analyzing their designs and trade-offs to assist researchers in selecting the appropriate tools for specific applications. Key libraries discussed include TRL, Verl, OpenRLHF, and several others, each catering to different RL needs and architectures.
reinforcement-learning ✓
open-source ✓
libraries ✓
large-language-models ✓
+ agentic-rl