Purem is a high-performance computation engine that enhances Python's speed for machine learning applications, offering 100-500x acceleration compared to existing libraries like NumPy and PyTorch. By optimizing operations at a low hardware level with zero Python overhead, Purem addresses bottlenecks in traditional ML workflows, enabling faster execution and seamless integration into existing codebases. It is designed for modern hardware and can significantly reduce computation times for various applications, from fintech to big data processing.
Python data science workflows can be significantly accelerated using GPU-compatible libraries like cuDF, cuML, and cuGraph with minimal code changes. The article highlights seven drop-in replacements for popular Python libraries, demonstrating how to leverage GPU acceleration to enhance performance on large datasets without altering existing code.