3 links
tagged with all of: performance + acceleration
Click any tag below to further narrow down your results
Links
Purem is a high-performance computation engine that enhances Python's speed for machine learning applications, offering 100-500x acceleration compared to existing libraries like NumPy and PyTorch. By optimizing operations at a low hardware level with zero Python overhead, Purem addresses bottlenecks in traditional ML workflows, enabling faster execution and seamless integration into existing codebases. It is designed for modern hardware and can significantly reduce computation times for various applications, from fintech to big data processing.
Python data science workflows can be significantly accelerated using GPU-compatible libraries like cuDF, cuML, and cuGraph with minimal code changes. The article highlights seven drop-in replacements for popular Python libraries, demonstrating how to leverage GPU acceleration to enhance performance on large datasets without altering existing code.
The article discusses five common performance bottlenecks in pandas workflows, providing solutions for each issue, including using faster parsing engines, optimizing joins, and leveraging GPU acceleration with cudf.pandas for significant speed improvements. It also highlights how users can access GPU resources for free on Google Colab, allowing for enhanced data processing capabilities without code modifications.