ParetoQ is a novel algorithm for low-bit quantization of large language models, unifying binary, ternary, and 2-to-4 bit quantization-aware training. It achieves state-of-the-art performance across all bit widths and offers a reliable framework for comparing quantization methods, demonstrating that lower-bit quantization can surpass traditional 4-bit methods in both accuracy and efficiency. The integration of ParetoQ into the torchao library facilitates easy deployment on edge devices while optimizing accuracy and compression trade-offs.
quantization ✓
deep-learning ✓
models ✓
performance ✓
+ paretoq