7 links
tagged with all of: llms + artificial-intelligence
Click any tag below to further narrow down your results
Links
The article explores how large language models (LLMs) perceive and interpret the world, focusing on their ability to understand context, generate responses, and the limitations of their comprehension. It discusses the implications of LLMs' interpretations for various applications and the challenges in aligning them with human understanding.
Sutton critiques the prevalent approach in LLM development, arguing that they are heavily influenced by human biases and lack the "bitter lesson pilled" quality that would allow them to learn independently from experience. He contrasts LLMs with animal learning, emphasizing the importance of intrinsic motivation and continuous learning, while suggesting that current AI systems may be more akin to engineered "ghosts" rather than true intelligent entities. The discussion highlights the need for inspiration from animal intelligence to innovate beyond current methods.
The article discusses practical lessons for effectively working with large language models (LLMs), emphasizing the importance of understanding their limitations and capabilities. It provides insights into optimizing interactions with LLMs to enhance their utility in various applications.
The article discusses the limitations of large language models (LLMs) in relation to understanding and representing the world as true models. It argues that while LLMs can generate text that appears knowledgeable, they lack the genuine comprehension and internal modeling of reality that is necessary for deeper understanding. Furthermore, it contrasts LLMs with more robust cognitive frameworks that incorporate real-world knowledge and reasoning.
The article discusses the expected advancements and state of large language models (LLMs) by the year 2025, highlighting trends in AI development, potential applications, and ethical considerations. It emphasizes the importance of responsible AI usage as LLMs become more integrated into various sectors, including education and business.
The article explores the advancements in large language models (LLMs) related to geolocation tasks, analyzing their accuracy and effectiveness compared to previous models. It discusses the implications of these improvements for various applications, particularly in the context of open-source intelligence and digital forensics.
The article discusses the potential of large language models (LLMs) to function as compilers, transforming natural language into executable code. It explores the implications of this capability for software development, highlighting the efficiency and creativity LLMs can bring to programming tasks. The piece also examines the challenges and limitations of using LLMs in this role.