AI agents leverage large language models (LLMs) to enhance software systems through contextual understanding, tool suggestion, and flow control. Their effectiveness is determined by the quality of the underlying software design, as poorly designed systems can lead to negative outcomes. The article outlines key capabilities of AI agents and explores their potential applications, particularly in customer support.
The article introduces the concept of "12-factor agents," which emphasizes engineering principles for building reliable and scalable AI agents. It critiques existing frameworks for lacking true agentic qualities and shares insights from the author's experiences with various AI frameworks, highlighting the importance of modularity and control in effective agent development.