3 links
tagged with all of: inference + vllm
Click any tag below to further narrow down your results
Links
TRL has introduced co-located vLLM to improve the efficiency of training large language models by allowing both training and inference to run on the same GPUs, eliminating idle time and reducing hardware costs. This integration enhances throughput, simplifies deployment, and makes the system more robust for online learning setups like GRPO. The new approach is supported by a series of performance experiments demonstrating significant speedups compared to traditional server setups.
The article provides an in-depth exploration of the process involved in handling inference requests using the VLLM framework. It details the steps from receiving a request to processing it efficiently, emphasizing the benefits of utilizing VLLM for machine learning applications. Key aspects include optimizing performance and resource management during inference tasks.
PyTorch and vLLM have been integrated to enhance generative AI applications by implementing Prefill/Decode Disaggregation, which improves inference efficiency at scale. This collaboration has optimized Meta's internal inference stack by allowing independent scaling of prefill and decode processes, resulting in better performance metrics. Key optimizations include enhanced KV cache transfer and load balancing, ultimately leading to reduced latency and increased throughput.