7 links
tagged with all of: gpu + inference
Click any tag below to further narrow down your results
Links
DigitalOcean offers a range of GradientAI GPU Droplets tailored for various AI and machine learning workloads, including large model training and inference. Users can choose from multiple GPU types, including AMD and NVIDIA options, each with distinct memory capacities and performance benchmarks, all designed for cost-effectiveness and high efficiency. New users can benefit from a promotional credit to explore these GPU Droplets.
oLLM is a lightweight Python library designed for large-context LLM inference, allowing users to run substantial models on consumer-grade GPUs without quantization. The latest update includes support for various models, improved VRAM management, and additional features like AutoInference and multimodal capabilities, making it suitable for tasks involving large datasets and complex processing.
A new compiler called Mirage Persistent Kernel (MPK) transforms large language model (LLM) inference into a single, high-performance megakernel, significantly reducing latency by 1.2-6.7 times. By fusing computation and communication across multiple GPUs, MPK maximizes hardware utilization and enables efficient execution without the overhead of multiple kernel launches. The compiler is designed to be user-friendly, requiring minimal input to compile LLMs into optimized megakernels.
TRL has introduced co-located vLLM to improve the efficiency of training large language models by allowing both training and inference to run on the same GPUs, eliminating idle time and reducing hardware costs. This integration enhances throughput, simplifies deployment, and makes the system more robust for online learning setups like GRPO. The new approach is supported by a series of performance experiments demonstrating significant speedups compared to traditional server setups.
GPUs are critical for high-performance computing, particularly for neural network inference workloads, but achieving optimal GPU utilization can be challenging. This guide outlines three key metrics of GPU utilization—allocation, kernel, and model FLOP/s utilization—and discusses strategies to improve efficiency and performance in GPU applications. Modal's solutions aim to enhance GPU allocation and kernel utilization, helping users achieve better performance and cost-effectiveness.
Nvidia has introduced a new GPU specifically designed for long context inference, aimed at enhancing performance in AI applications that require processing extensive data sequences. This innovation promises to improve efficiency and effectiveness in complex tasks, catering to the growing demands of AI technologies.
Alibaba Cloud has developed a new pooling system called Aegaeon that significantly reduces the number of Nvidia GPUs required for large language model inference by 82%, allowing 213 GPUs to perform like 1,192. This innovative approach virtualizes GPU access at the token level, enhancing overall output and efficiency during periods of fluctuating demand. The findings, which were published in a peer-reviewed paper, highlight the potential for cloud providers to maximize GPU utilization in constrained markets like China.