Python's Pandas library has moved away from using NumPy in favor of the faster PyArrow for data processing tasks. This shift aims to improve performance and efficiency in handling large datasets, highlighting a significant change in the way data manipulation is approached in Python environments.
The article discusses five common performance bottlenecks in pandas workflows, providing solutions for each issue, including using faster parsing engines, optimizing joins, and leveraging GPU acceleration with cudf.pandas for significant speed improvements. It also highlights how users can access GPU resources for free on Google Colab, allowing for enhanced data processing capabilities without code modifications.