Since the inception of SQL in 1974, there has been a recurring dream to replace data analytics developers with tools that simplify the querying process. Each decade has seen innovations that aim to democratize data access, yet the complex intellectual work of understanding business needs and making informed decisions remains essential. Advances like AI can enhance efficiency but do not eliminate the crucial human expertise required in data analytics.
The article discusses effective strategies for significantly reducing the size of Power BI data models, potentially achieving a reduction of up to 90%. It focuses on various techniques such as optimizing data types, removing unnecessary columns, and implementing aggregation to improve performance and efficiency in data analysis.